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The classical theory of the influence of single immobile dislocations on the 
diffusion of point defects cannot be applied to the description of the influence 
of a finite but very large number of dislocations on this diffusion, because in 
this case dissipative effects (due to dislocations) cannot be neglected. In this 
paper these dissipative effects are described by means of a generalized gauge 
procedure taking advantage of the existence of the short-range order in continuized 
dislocated crystals. It is shown that, for uniformly dense distributions of 
dislocations, the existence of dissipative effects means the existence of a 
(nonvanishing) scalar curvature of a conformally flat configurational space of a 
single diffusing point defect. Equations describing the interaction energy between 
dislocations and a diffusing point defect are proposed, and the contribution to 
this energy of elastic as well as inelastic interactions is discussed. 

1. N T R O D U C T I O N  

The balance equation of  point  defects diffusing in a crystalline solid 

has the form 

0~n + div(nv) = r (1) 

where n = n(X, t) is the density of the number  of  defects diffusing at the 
instant t, v = v(X, t) is the so-called diffusion peculiar velocity, and tr = 
tr(X, t) is a source tenn.  X = (X A) denotes a Lagrange coordinate system on 

the body ~ considered as an open connected subset of  its configurational  
Eucl idean point  space E 3, and E 3 is identified [by means  of  a dist inguished 
Cartesian coordinate system Z = (zA)] with the arithmetic point  space R 3 

(see, e.g., TrzCsowski, 1993b). We will neglect  the inf luence of the body 
boundary on the diffusion. The body ~ can be identif ied then with its 
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configurational space E 3 & R 3, & means that a formula is valid in a distin- 
guished (Cartesian) coordinate system. The considered coordinate systems 
will be assumed to be geometric frame references, i.e., dimensional coordinate 
systems with [X a] = [dX A] = cm, [OA = OlOX A] = cm -I (in the cgs units 
system). 

The simplest model of the diffusion phenomenon is based on the follow- 
ing assumptions. First, it is assumed that point defects are identical but 
distinguishable and interactions between them can be neglected. The probabil- 
ity P(Qt ~ U) that the actual (at the instant t) position Qt of a diffusing defect 
is a point of the domain U C 9~ (*  R 3) is then given by 

P(a, ~ u) = Iu p(X, t) dr(X) (2) 

where we have denoted (Klimontovitch, 1982) 

n(X, t) 
p(X, t) - (3) 

N(t) 

N(t) = [~ n(X, t) dV(X) < oo 

where dV(X) denotes the Euclidean volume element. N(t) is a finite but 
very large number of point defects diffusing at the instant t, and the above 
approximation of p(X, t) is the better, the greater N(t) is. 

The second basic assumption is that the influence of diffusing point 
defects on the matrix crystal lattice can be neglected. Then, if additionally 
external fields or other crystal lattice defects are absent, the f luxj  of diffusing 
point defects has (in Cartesian coordinates) the form of the so-called Fick law: 

ja  = nu a & _DAnOnn, i.e., v a = u a (4) 

where the matrix (D an) of diffusion coefficients is a constant, symmetric, 
positive-definite matrix, and u = UaOA is called the diffusion velocity. For 
Fick's law to be valid, the concentration of the diffusing point defects in the 
background crystalline medium must be small. Consequently, the influence 
of external fields (or other crystal lattice defects) on the diffusion flux is 
described by the so-called drift velocity b defined as 

b = v - u (5) 

Assuming the source term o" in the form 

~r = d(t)n, d(t) = N(t)lN(t) (6) 

as it is, e.g., for radiation-induced point defects, we obtain from (1)-(6) the 
following diffusion equation: 
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Otp -{- F(O)p = 0 (7 )  

F(O) * OA(" h A) - DABOAO n 

If the drift velocity does not depend on the density of diffusing point defects, 
then this equation can be considered as a Fokker -P lanck  equation describing 
the localization probability of a Markov motion (with mean velocity b) in 
the Euclidean configurational space R 3 of an arbitrary distinguished diffusing 
point defect. If the drift vanishes, the diffusion can be regarded as a pure 
random phenomenon--the f ree  diffusion in a homogeneous body. 

We see that the fundamental expressions to describe a Markov-type 
diffusion process are the balance equation of the form 

Otp -k- Oa(pv A) = 0,  V a = U A -{- hA (8 )  

where 

pu a = -DanOnp (9) 

and a constitutive relation defining the dependence of the drift velocity on 
external fields or crystal lattice defects. For example, if the drift is small 
compared with the chaotic motion of point defects, then this constitutive 
relation can be assumed in the form of the so-called Stokes relation: 

b A = MASFB, Fn : ~AB FB (10) 

where F = FAOA denotes the force acting on a point defect, and M An are 

(constant) mobility coefficients of the defect. Since we ignore the influence 
of diffusing point defects on interatomic forces in the crystal lattice, the force 
F caused by an external field of small lattice strains CAB takes the form 

F A = [.I, vBCOAeBC (11) 

where V nc are constants with the dimension of volume, and IX is a constant 
with the dimension of stress (Kosevitch, 1972). In the isotropy approximation 

D An = D~ An (12) 

Man = [-l~an, Van = Vo~AB 

where ~ is a friction coefficient, V0 is the volume of the material "transferred" 
by the diffusing point defect, and Ix is equal to the bulk modulus of the 
elastic medium. Then 

F a = --OAE ( 1 3 )  

where the (elastic) interaction energy E is given by 

E = Vox, "r = {tr  a" (14) 
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and "r denotes the hydrostatic pressure corresponding to the field a" of external 
stresses. The force F of the form (13) and (14) is, in the linear approximation, 
the force with which the external field acts on a center of dilatation in the 
isotropic medium. It can be shown that in this approximation the point defects 
do not interact (Kosevitch, 1972). 

It follows from (3) with N(t) = const, (7), (10), (12), and (13) that there 
exists a heterogeneous steady distribution of diffusing defects given by 

n(X)  = no e x p ( - E ( X ) l O ) ,  0 = ~D (15) 

where O is a characteristic energy of the diffusion process. Since in the 
considered linear diffusion equation [and thus in the balance equation (1)] 
there is then no source term, we can consider n(X)  of (15) as the one defining 
a steady equilibrium state of diffusing point defects. In particular, if O = 
ksT, where ks is Boltzmann's constant and T is the absolute temperature of 
the body, then it is a steady equilibrium distribution of a thermally activated 
diffusion process in the external elastic field. We assume that the considered 
diffusion process also admits a spatially uniform equilibrium distribution of 
diffusing point defects, i.e., that the considered diffusion equation also admits 
a constant solution n(X, t) = no. Then the energy E of (13) and (15) should 
be a harmonic function: 

A E  = O, A = ~A~oAOa (16) 

This classical approach to the description of the diffusion' phenomenon 
can be applied to the description of the influence of single dislocations on 
the diffusion. Namely, it is well known (Hull and Bacon, 1984; Orlov, 1973) 
that the most important contribution to the interaction between a point defect 
and a dislocation is usually that due to the distortion the point defect produces 
in the surrounding crystal. The distortion may interact with the stress field 
of the dislocation to raise or lower the elastic energy of the crystal. This 
change is the interaction energy E. Estimates of the interaction energy may 
be obtained by treating the crystal as a continuum elastic solid and using 
elasticity theory. The simplest model of a point defect is an isotropic elastic 
sphere inserted into a smaller or greater spherical hole in an elastic isotropic 
matrix with the same elastic coefficients. Oversized or undersized defects are 
interpreted as those modeling mass point defects (substitutional or interstitial 
impurities or self-interstitials) or vacancies, respectively (Hull and Bacon, 
1984). The force acting on a point defect then has the form defined by (13) 
and (14). For example, the irradiation of a crystal with fast neutrons produces 
very small circular edge dislocation loops. These loops can be treated, in the 
continuized crystal approximation, as infinitesimal ones, and the interaction 
energy E can be approximated then by the following particular solution of 
(16) (Bullough and Newman, 1970): 
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1 - cos21~ 
E(r, a~) = eV00 r3 (17) 

where spherical coordinates (r, a~, et), r --- 0, 0 --< 0 --< "tr, - 'rr < ot < "rr, 
are used, r denotes the distance between the (infinitesimal) dislocation loop 
and a point lying on a conical surface 0 = const, and O and 1/0 denote a 
characteristic energy and volume, respectively. For oversized (undersized) 
point defects we have e = 1 (e = - 1) (Hull and Bacon, 1984). It is known 
that if the interaction energy E = E(r, ~, ~) is taken into account in order 
to define a drift term in the diffusion equations (7), (10), (12), and (13), 
then an estimation of this energy neglecting its angular dependence may be 
acceptable (Bullough and Newman, 1970). The elastic interaction energy 
becomes then the harmonic function 

E(r) = e O  L (18)  
r 

where L is a characteristic linear parameter. Note that I E(L) I = O and I E(r) I 
<--- O for r ----- L. Thus, for O = knT, L can be interpreted as a distance over 
which an equilibrium distribution of point defects is "smeared" by their 
thermal motion (Orlov, 1973). 

The occurrence of many dislocations causes an inelastic distortion of 
the crystal lattice, and the influence of this distortion on the diffusion process 
manifests itself in the variableness of diffusion coefficients and in the appear- 
ance of some dissipative effects due to the inelastic character of interactions 
between dislocations and a point defect diffusing in the distorted crystalline 
solid. Consequently, we can expect then, e.g., the existence of nonequilibrium 
steady states of diffusing defects. Thus, the classical approach, based on the 
model of the diffusion in a homogeneous, elastically distorted body, cannot 
be used. However, though the existence of many dislocations breaks the long- 
range order of a crystalline solid (and the dislocated crystalline solid becomes 
a heterogeneous one), nevertheless its short-range order is remarkably pre- 
served, and the dislocated crystalline solid can be locally approximately 
described as a (macroscopically) small part of an ideal crystal. It leads, in a 
continuous limit defining the so-called continuized crystal, to the geometrical 
theory of dislocations (TrzCsowski, 1997; hereafter referred to as Part I) 
and to the gauge theory of dislocations (TrzCsowski, 1993b) describing the 
mechanical properties of continuized dislocated crystals. It also enables us 
to formulate a generalized gauge procedure (Section 2) based on the assump- 
tion that dislocations have no influence on local diffusive properties of a 
continuized crystal (TrzCsowski, 1989, 1993a, 1995). This procedure consti- 
tutes a geometric version of the thermodynamic hypothesis that some proper- 
ties of linear systems [e.g., the one defined by (8) and (9)] are preserved in 
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states far from the thermodynamic equilibrium state (Glansdorff and Prigog- 
ine, 1973). 

In this paper we consider distributions of dislocations admitting the 
isotropy of  diffusive properties of a dislocated continuized crystal. In particu- 
lar, this means that the considered tensor field of diffusion coefficients has 
the form 

DAB(Z) = D(Z)~ AB (19) 

D(Z) = DMZ), [D] = cm 2 sec -1 

where D is a characteristic diffusion coefficient, h is a positive dimensionless 
scalar, and Z = (ZA), [Z A] = cm, is a Cartesian geometric frame reference. 
The diffusion coefficient tensor field can be used to define an associated 
Riemannian metric 

gal~(Z) = K-I(Z)~AB (20) 

The considered body endowed with this metric constitutes a conformally flat 
material Riemannian space being, at the same time, the configurational space 
of a single diffusing point defect (Section 2). It turns out that the constant 
(sectional) scalar curvature of this configurational space is a geometric factor 
representing the existence of dissipative effects in the considered diffusion 
process as well as being a measure of  the distance of a nonequilibrium 
Markov-type diffusion process from the equilibrium (Markov-type) one (Sec- 
tions 2-4) .  

2. GENERALIZED GAUGE PROCEDURE 

Let us consider a pair (@, g) defining the short-range order of the 
considered isotropic continuized crystal (see Part I), where tI) = (Ea; a = 1, 
2, 3) is a Bravais moving frame and g denotes the internal length measurement 
metric tensor defined by the condition that dislocations as well as the second- 
ary point defects created by them have no influence on local metric properties 
of the continuized crystal, i.e., that 

g(X) = ~bEa(X) ~ Eb(X) (21) 

where X = (X A) is a geometric frame reference (Section 1) and ~ *  = (E a) 
is the moving coframe dual to ~,  i.e., 

Ea(X) = aeA(X)OA, Ea (x )  = ~A(X) dX A 

~A(X)~a(X) = 8~, (22) 

a 

[E a] --- cm, [Ea] = cm -1, [eA] = [~]  = [1] 
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and, additionally, by the isotropy condition written as (see Part I) 

gaB(Z) *- (1 + ~(Z))2~AB (23) 

where Z = (Z a) is a Cartesian frame reference and the scalar ~ describes the 
influence of secondary point defects, created by the distribution of many 
dislocations, on the internal length measurement. 

The assumption of the generalized gauge procedure that dislocations 
have no influence on local diffusive properties of a continuized crystal (Sec- 
tion 1) means, among other things, that the diffusion coefficient tensor field 
ought to have constant coefficients with respect to the Bravais moving frame, 
that is, for isotropic bodies one should have [cf. (19)] 

D(X) = DabEa(X) | Eb(X), D ab = D~ ab (24) 

where D ab are diffusion coefficients of a homogeneous isotropic continuized 
crystal taken with respect to a Cartesian coordinate system. It follows from 
(21)-(24) that the conformally flat metric tensor associated with the diffusion 
coefficient tensor field [(19) and (20)] covers with the internal length measure- 
ment metric tensor, and [in Cartesian coordinates of (20) and (23)] should be 

k(Z) = (1 + ~(Z)) -2 (25) 

This means that the considered point defects are assumed to be immobile 
ones created by the distribution of dislocations and distorting the internal 
length measurement (of a continuized crystal), and the diffusing ones that 
influence this measurement can be neglected. This assumption can be accepted 
if the concentration of diffusing point defects is small in relation to the 
concentration of immobile ones. 

The second assumption of the generalized gauge procedure states that 
a diffusion equation of the type (7), with the diffusion coefficients changed 
for spatially varying (in a smooth manner) ones, can be deduced from a 
balance equation of the form (8) and (9). It can be realized when fields 
compensating the influence of the varying diffusion coefficients on these 
relations are introduced. These compensating fields may be defined by chang- 
ing the partial derivative appearing in (7)-(9), by the Levi-Civita covariant 
derivative Vg = (F~c[g]) associated with the internal length measurement 
metric tensor: 

Fac[g] = �89176 + OBgco - OogBc) (26) 

i.e., by a symmetric covariant derivative metric with respect to g. Then 

Vgo = 0 (27) 

and the modified diffusion equation becomes (Trzgsowski, 1993a, 1995) 

Otp + F(Vg)p = 0, F(V g) = divg('b) - DAg (28) 
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where the Laplace-Beltrami operator Ag and the divergence operator divg 
act according to 

Asp = gABV~Vftp = g-lt2OA(gl/2gaBOBp) (29) 

divgv = Viv A = g-1/2Oa(gl/2vA ) 

and g is a scalar density (of weight 2) defined in (30). Equation (28) can be 
considered as an equation defining the localization probability of the stochas- 
tic motion of a point defect on the Riemannian configurational space (R 3, g). 
This localization probability is given by (2) and (3) with Riemannian volume 
element dV(X): 

dV(X) = g(X)t/2dVo(X) (30) 

g(X) = det(gAB(X)), dVo(X) = dX 1 ̂  dX 2 ^ dX 3 

where dVo(X) covers, in Cartesian coordinate systems of (20) and (25), with 
the Euclidean volume element. Note that a probability density p so defined 
is a scalar. 

It can be shown that for a steady drift velocity b (0~ = 0), (28) is a 
Fokker-Planck equation for a diffusion Markov process on (R 3, g), and the 
drift velocity can be taken, without loss of generality, in the following form 
(Ikeda and Watanabe, 1981): 

b a = DBC(FAc[g] -- F~c) (31) 

where the Christoffel symbols FAc[g] are defined by (26) and F~c are connec- 
tion coefficients defining a covariant derivative V preserving local diffusion 
properties of the body, that is, V = (F~c) and 

VO = 0 (32) 

Then (Trzcsowski, 1995) 

b a = 2DS A, S A = gAaSs, SB = SAAS, SABc = F~ncl (33) 

and 

T A = i S  A ~- ~ATa, T a = co a Jr ta, t a = Cbab, O) a = oJbba (34) 

where 

[Ea, Eb] = ~aabEc (35) 

Y E a  - -  {Dba ( ~  Eb, o.}ab = tOcabE c 

and [u, v] = u o v - v o u denotes the commutator product (bracket) of 
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vector fields u and v considered as first-order differential operators. Since 
the condition (32) means 

Vg = 0 (36) 

and such covariant derivatives are the subject of the gauge theory of static 
distributions of dislocations (Trz~sowski, 1993b), we can compute the drift 
velocity b based on this gauge theory. In Sections 3 and 4 we will show that, 
for uniformly dense distributions of dislocations (see Part I) satisfying the 
isotropy condition (23), the drift velocity can be computed in an another way. 

The mean velocity of the considered diffusion Markov process is a 
Cartesian vector field B = BAOA defined by (Trz~sowski, 1995) 

B A * b A + c a, c A = -DnCF~c[g]  (37) 

It follows from (19), (20), and (26) that 

CA = gaBcn = - ( D I 2 ) ~ A B o s k  (38) 

cs = (DI2)OBh, h = - I n  k 

If the drift velocity b a vanishes, then B A = c A is the mean velocity of a 
Brownian motion on the Riemannian manifold (R 3, g). We will then call the 
diffusion process locally f r e e  diffusion. If additionally the metric g is fiat, 
then ca = 0 and we obtain a classical Brownian motion on the Euclidean 
space R 3 describing the free diffusion process (Section 1). 

It follows from (5), (9) [with D An changed to DAa(Z)], (19), and (27) 
that the Fokker-Plank equation (28) can be written in the form of a balance 
equation on the Riemannian manifold (R 3, g): 

O,p + V~(pv A) = 0 (39) 

v A = u a + b A, p u  A = --DAB(Z)OBp 

From (3), (6), (29), and (38) we obtain that, in the Cartesian coordinate 
system Z = (Z  A) of (19) and (20), the balance equation (39) takes the form 
(1) with 

3 
tr = E(Z ,  t)n, E(Z ,  t) = - - ~  vA(Z, t)CA(Z) + d(t)  (40) 

Since e = 0 iff h = const [see (38)], thus (19), (39), and (40) mean that 
dissipative effects due to dislocations described by the generalized gauge 
procedure are equivalent to the appearance of a locally free diffusion in the 
continuized dislocated crystal. The locally free diffusion is caused in turn by 
the occurrence of secondary point defects created by the distribution of 
dislocations [see (23) and Part I]. 
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3. I N T E R A C T I O N  E N E R G Y  

The long-range distortion of a crystal structure due to the influence of 
many dislocations is described in the continuized crystal approximation by 
the Burgers  f i e l d  "to = (~),  a triple of 2-forms defined as (see Part I) 

'r a = d E  a = �89 Eb A E C (41) 

Xabc = - C~c, [Xabc] = cm-  l 

where the moving coframe ~ *  = (E a) dual to the Bravais moving frame cD 
= (Ea) is defined by (22), and smooth scalars C~bc constitute the object of 
anholonomity of dp [see (35)]. If Cgc = const, then the distribution of disloca- 
tions is called un i fo rmly  dense ,  and the object of anholonomity becomes a 
set of structure constants of the three-dimensional real Lie algebra g,~ of 
vector fields tangent to the body and possessing �9 as its base (see Part I). 
It can be shown that there are only three types of nonisomorphic Lie algebras 
go for which the internal length measurement metric tensor (Section 2) has 
a constant (sectional) scalar curvature (see Part I). Namely, edge dislocations 
are described by the Lie algebra denoted by gt, screw dislocations by the Lie 
algebra gv, and mixed dislocations by a family { g~, 0 --< K --< 1 } of Lie algebras. 

If the internal length measurement metric tensor g has the constant scalar 
curvature K, then the isotropy condition (19) [with h given by (25)] is fulfilled, 
and g is a flat metric iff K = 0. If the scalar curvature K does not vanish, 
then there are two characteristic parameters associated with the generalized 
gauge procedure: the diffusion coefficient D, [D] = cm 2 sec- 1, and the linear 
parameter rd = IK1-1/2, [ra] = cm. Combining these parameters, we obtain 
a time parameter to: 

1 
to = D I K I " [to] sec (42) 

Since the diffusion coefficient can be written as 

r2d 
D = - - ,  ra = IKI -u2 (43) 

to 

this time parameter can be interpreted as a re laxa t ion  t ime  needed by the 
diffusion process to reach a steady state with the characteristic length rd. 
Since to = ~ for K = 0, the finiteness of  this relaxation time means the 
existence of dissipative effects due to dislocations in the considered diffusion 
process [see (40) and the related commentary]. 

Let us assume that the drift velocity b = ba0A is given by 

b = D du = ba d Z  a, ba = gABb B (44) 

where Z = ( Z  A) is the Cartesian coordinate system of (20). A steady state 
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of the considered diffusion process is defined by (28), (44), and the condition 
Otp = 0. In particular, the localization probability defined by 

p(Z)  = Po exp(-U(Z)IO) (45) 

U(Z) = - O u ( Z ) ,  [O] = g cm 2 sec -2 

where O is a characteristic energy of the diffusion process, fulfills these 
conditions. Therefore, U(Z) can be recognized as the self-energy of the 
reduced microstate Z of the system of noninteracting diffusing point defects 
defined as a place Z of a single distinguished point defect moving on the 
Riemannian manifold (R 3, g) in a random way (Trz~sowski and Piekarski, 
1992). Taking O = kaT, where T is the temperature of a thermostat, we can 
consider a nonequilibrium diffusion process as one thermally activated at the 
temperature T of the environment of the body (Trz~sowski and Piekarski, 
1992) and admitting a heterogeneous nonequilibrium steady distribution of 
diffusing defects defined by (45) [see the commentary following (15)]. 

The mean velocity B = BAOA of diffusing point defects [defined by (37) 
and (38)] can be written [in the case (44)] as 

BA = gAsB s = bA + CA = --~-IOAE (46) 

E = - O ( u  + h/2), ~ = O/D, [4] = g sec-t 

where [ is a characteristic friction coefficient of the diffusive motion of a 
point defect [cf. (12) and (15)]. If the drift of diffusing point defects is small 
with respect to their chaotic (thermal) motion, then the force F = FAOA acting 
on a point defect can be estimated by means of the Stokes relation (Section 1): 

F a = ~ B  A (47) 

and the condition (13) is fulfilled with E given by (46). Thus, the energy E 
has the physical meaning of an interaction energy (possibly of effective energy 
character) between dislocations and a diffusing point defect. Comparing (44) 
and (46) with (33) and (34) and taking into account that (see Part I) 

tA = 0aq~ for K < 0  (48) 

tA=O for K-->O 

we obtain 

and 

a 

OJ A = eAtO a = OAI[I , I~ ~ -  U - -  q~ 

e=Ee+G 
Ee = -Ot~,  Ep = -O(q0 + lnll  + ~1) 

(49) 

(50) 
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It can be shown (see Part I) that if K < 0, then the potential q~ of (48) and 
(50) should fulfill the equation 

Agq~ = 4K (51) 

or, writing (51) in terms of dissipative effects due to the influence of disloca- 
tions on the diffusion [see (19), (25), and (40)], the equation 

r2Aq0 + toe.grad q~ + 4(1 + ~)z = 0 (52) 

where A denotes the Euclidean Laplacian [see (16)], u . v  = ~aBuAvB is the 
Euclidean scalar product, and (23), (29), (30), (38), (42), and (43) were taken 
into account. 

Let us compute, in the limit K ---> 0, the interaction energy limit. It needs 
to take into account the commutation rules defining the Lie algebras gt, gx, 
and gK [see the commentary following (41)]. These are as follows (see Part 
I). The Lie algebra ~ is isomorphic to the Lie algebra so(3) of the group 
SO(3) of (proper) rotations in three real dimensions: 

[ga, gb] = 2k~acbgc, ~aCb = ~ac~odb (53) 

where Cabc denotes the permutation symbol. The Lie algebra g, is defined by 

[El, E:] = 2kEz, [El, E3] = 2kE3, [Ez, E3] = 0 (54) 

Lie algebras gK, 0 <- K --< 1, are defined by 

[El, E2] = 2k(v.E2 + E3), [El, E3] = 2k(KE3 - E2), 

Moreover, we have 

K = 1 2 2 ,  t . = 0  for g . = g . ~  

K = -122, t. = 4k8~ for g .  = gt 

K = --Kl2 z, t. = 4kKga l for g .  = gK 

ld = I l k  > 0, [kl = cm -l ,  [K] = [11 

[E2, E3] = 0 
(55) 

(56) 

It follows from (53)-(56) that if k ---> 0, then K ----> 0 and dislocations vanish. 
So in this limit the interaction energy E should vanish, too. Since q~ ---> const 
[see (48)] and ~ ---> 0 [see (25)] for K ----> 0, the energy Ee should be taken, 
e.g., in the form 

Ee(Z)  = O ' q ( k ) x ( Z ) ,  "q(0) = 0, ['qx] = [1] (57) 

Let us observe that if K --> 0, then K ---> 0, although k :/: 0. Thus, in this 
case dislocations do not vanish, and the interaction energy E reduces to its 
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part Ee defined by (57). This distribution of dislocations is described by the 
Lie algebra go defined by [see (55)] 

[El, E2] = 2kE3, [El, E3] = -2kE2, [E2, E3] = 0 (58) 

and admitting the existence of mixed as well as screw dislocation lines (see 
Part I). It follows from (58) that go is isomorphic to the Lie algebra e(2) of 
the group E(2) of motions of the plane R 2. 

4. CLASSICAL LIMIT  

It follows from Section 3 that in the case of uniformly dense distributions 
of dislocations, the potential u of (44) defining the drift velocity b can be 
represented in the form [see (49), (50), and (57)] 

u = t~ + q~, t~ = --q(k)x, -q(0) = 0 (59) 

where the potential q~ is defined by (51) for K < 0 and reduces to a constant 
(say equals zero) for K >- 0. In the limit K ---> 0 we have k = 1 [see (20)], 
q~ = 0, the dissipative effects of the form (40) reduce to (6), and the diffusion 
equation (28) reduces to its classical equilibrium form (7) with 

D A8 = O~ aB, bA = ~ABb B = --~-Ir (60) 

where Ee has the form (57). Since for Lie algebras gt and g~ the limit K --> 
0 is equivalent to k --> 0 [see (56)], we obtain that (28) then reduces to the form 

alp - OAp = 0 (61) 

describing the free diffusion process (Section 1). 
For the family gK, 0 --< K ----- 1, of Lie algebras, the limit K --> 0 can be 

considered as a consequence of the limit K --> 0 [see (56)]. Then, for K = 
0, the energy Ee preserves its general form (57), and the considered distribu- 
tions of dislocations reduce to the one described by the Lie algebra go [see 
(58)]. Moreover, the assumption of the existence of a spatially uniform 
distribution of diffusing point defects (Section 1) needs the energy Ee to be 
a harmonic function [see (16)], i.e. [see (57) and (59)] it should be 

AX = 0 (62) 

Therefore, the energy Ee can be interpreted, at least in the case of a Lie 
algebra gK, as the elastic part of the interaction energy E defined by (50). 
Equations (50) and (52) mean that the part Ep of the interaction energy can 
be considered as that to which inelastic interactions between dislocations and 
a diffusing point defect contribute. Since the separation (50) of the interaction 
energy does not depend on the choice of the Lie algebra, we can postulate 
an extension of the definition (57) and (62) of the elastic interaction energy 
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on the Lie algebras gt and gv. Then the influence of elastic and inelastic 
interactions on the drift velocity b is described by (44), (59), (62), and (52) 
for K < 0 or q~ = const for K --- 0. 

A broad class of elastic interaction energies, containing continuous coun- 
terparts of energies mentioned in Section 1 [see (17) and (18)], can be obtained 
by assuming the form (57) of this energy and, in spherical coordinates (Section 
1), that 

e(6) 6 = cos O, [-q(k)] = cm n (63) • = r n ,  

The Laplace equation (62) then reduces to 

(1 - 62)e"(6) - 26e'(~) + n ( n  - 1)e(~) = 0 

For n = 1 the general solution of (64) has the form 

1 1 + 6  I 
e(6) = ~ In 7----;I + Co 

l - t [  

(64) 

(65) 

and for ~ = 0 and co = 1 we obtain a counterpart of (18) with 

1 
"q(k) = ~L(k), • = - ,  L(0) = 0, [L(k)] = cm (66) 

r 

If I~1 < <  1 and Co = 0, then 

cos 0 
•  - (67) 

F 

For n = 3 the counterpart of  (17) defined by 

1 - 3 cos20 
"q(k) = ~Vo(k),  x(Z) = r3 , Vo(O) = 0, [V0(k)] = cm 3 

(68) 

is a particular solution of (64), and thus the general solution of (64) defines 

e ( ~ )  
x(Z)- r3 , ~ = c o s O  

e(6)  = c l e l ( 6 )  + c2e2(6), el(~) = 1 - 362 (69) 

e2(~) = �88 - 362)[artgh 6 - x/~ artgh(x/~)]  + 36 

The elastic interaction energy of the form (57), (68) may be applied, e.g., in 
the case of the dislocation fluid model (based on the Lie algebra gt; see Part 
I) for a crystal irradiated with fast neutrons [see remarks preceding (17)]. 
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5. CONCLUSIONS 

It was shown (see Part I) that the existence of point defects created by 
a distribution of many dislocations influences, in the continuized crystal 
approximation, the geometry of this distribution. For example, a conformal 
change (even small) of the internal length measurement in a continuized 
crystal due to the influence of these point defects transforms glide planes 
onto flat umbilical surfaces. The generalized gauge procedure presented in 
this part of the paper leads to the conclusion that this conformal change is 
also a source of the appearance of dissipative effects in diffusion processes 
of point defects (in continuized dislocated crystals; see Section 2). 

If we restrict ourselves to uniformly dense distributions of dislocations 
with the internal length measurement of a constant scalar curvature (see Part 
I), then it turns out that this curvature has a fundamental character in the 
description of the geometry of continuous distributions of  dislocations (see 
Part I) as well as in the description of diffusion processes of  point defects 
due to their interactions with dislocations. Namely, dissipative effects (due 
to dislocations) in such diffusion processes vanish if the scalar curvature 
vanishes (Sections 2 and 4), and the existence of a finite relaxation time of  
these diffusion processes is equivalent to the existence of a nonvanishing 
scalar curvature (Section 3). 

If the scalar curvature vanishes, then the nonequilibrium diffusion equa- 
tion obtained by means of  the generalized gauge procedure reduces to the 
classical diffusion equation (Section 4). The analysis of this "classical limit" 
shows that the interaction energy between dislocations and a diffusing point 
defect (Section 3) can be divided into two parts: the elastic interaction energy 
being a harmonic function, and a part to which inelastic interactions contribute 
(Section 4). An equation describing this inelastic contribution can be deduced 
from the geometry of  the distribution of dislocations (Section 3). 

R E F E R E N C E S  

Bullough, R., and Newman, R. (1970). Reports on Progress in Physics, 33, 101. 
Glansdorff, P., and Prigogine, I. (1973). Theory of Structure, Stability and Fluctuations, Mir, 

Moscow [in Russian]. 
Hull, D., and Bacon, D. J. (1984). Introduction to Dislocations, Pergamon Press, Oxford. 
Ikeda, N., and Watanabe, S. (1981). Stochastic Differential Equations and Diffusion Processes, 

North-Holland, Amsterdam. 
Klimontovitch, I. N. (1982). Statistical Physics, Nauka, Moscow [in Russian]. 
Kosevitch, A. M. (1972). Foundations of Crystal Lattice Mechanics, Nauka, Moscow [in 

Russian]. 
Orlov, A. N. (1973). Thermally Activated Processes in Crystals, Mir, Moscow [in Russian]. 
Trz~sowski, A. (1989). International Journal of Theoretical Physics, 5, 545. 



208 Trzgsowski 

TrzCsowski, A. (1993a). In Continuum Models of Discrete Systems, K.-H. Anthony and H. I. 
Wagner, eds., Trans Tech, Brookfield, Vermont. 

Trzgsowski, A. (1993b). Reports on Mathematical Physics, 1, 71. 
Trz~sowski, A. (1995). Progress of Physics, 43, 1. 
Trz~sowski, A. (1997). International Journal of Theoretical Physics, this issue. 
Trzcsowski, A., and Piekarski, S. (1992). Nuovo Cimento, 14D, 767. 


